
International Journal of Theoretical Physics, Vol. 35, No. 2, 1996 

Path-Dependent Phase Shifts in Isolated Systems 
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The Aharonov-Casher effect in a closed system is discussed. In this model, the 
charge on the wire is produced by a conducting bar moving in a magnetic field. 
If one considers the neutron to be a classical particle and the moving bar to be 
a quantum object, then the wave function of the bar acquires a phase shift equal 
in magnitude but opposite in sign to the usual phase shift of the neutron wave 
function. It is also shown that in any closed system, a path-dependent phase shift 
of one part of the system is always accompanied by an opposite phase shift of 
the remainder of the system. This result follows directly from the principle of 
least action. 

1 . 1 N T R O D U C T I O N  

In a recent paper by Henneberger  and Opatrn3~ (1994), it was shown 
that the external field approximation can lead to wave functions in which 
single-valuedness is forfeited because of  the approximation made. The 
A h a r o n o v - B o h m  (AB) effect was cited as an example. Specifically, it was 
shown that when the solenoid of  the AB effect is represented as a spinning 
charged cylinder, the spinning cylinder undergoes a phase shift equal in 
magnitude but opposite in sign to that of  the electron. 

The thoughtful reader might conclude that this cancellation of  phase 
shifts is no mere accident. In the present work, it is shown that such a 
cancellation always occurs in isolated systems in which the parts of  a very 
weakly interact!ng system undergo path-dependent phase shifts. We first 
present the Aharonov-Casher  (AC) effect in an isolated system as an addi- 
tional example.  In conclusion, a general theorem dealing with path-dependent 
phase factors in isolated systems is presented. 
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2. THE A H A R O N O V - C A S H E R  EFFECT 

Aharonov and Casher (1984) showed that a magnetic dipole (a neutron) 
aligned parallel to a static line charge (a charged wire) will experience no 
force; however, paths in the plane perpendicular to the line charge passing 
it on opposite sides give a relative phase shift. Experimental verification of 
the effect was obtained by Kaiser e t  al .  (1988) and by Cimmino e t  al.  (1989). 

The AC effect is a consequence of the fact that a moving magnetic 
moment gives rise to an electric dipole moment 

1 
p = - v  x ix (1) 

c 

The energy of interaction with the line charge is then 

U - p  E 1 . . . .  v . E  x ix (2) 
c 

where E is the electric field of the line charge. 
The interaction of equation (2) has a long history in physics. It was 

shown long ago by Thomas (1926) and Frenkel (1926) that this interaction 
is responsible for spin-orbit coupling. A complete nonrelativistic derivation 
of spin-orbit coupling based on this interaction was recently given by AI- 
Jaber e t  al .  (1991). These authors show the spin-orbit interaction to be due 
to Larmor precession of the orbit due to an effective magnetic field given by 

1 
B~ff = - -  (ix. V)E (3) 

e 

Still more recently, the present authors have argued that the energy correction 
for s-states first obtained by Darwin (1928) is due to a quadratic term in the 
effective vector potential 

Aefr = __1 (E x Ix) (4) 
e 

in the expression for the electron's kinetic energy. 
As shown by Henneberger and Opatrn)~ (HO) (1994), if one insists upon 

single-valued wave functions in problems dealing with path-dependent phase 
shifts, one must consider an isolated system. We call the reader's attention 
to the fact that the usual discussions of the AB and AC effects involve an 
exchange of energy of the solenoid (in AB) or the charged wire (in AC) with 
the environment. The purpose of the HO paper was to make this energy 
exchange clear, and to show that the angular position of the rotating cylinder 
slightly leads or lags the position it would have, had the electron not passed. 
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In a discussion of the AC effect, it is likewise necessary to consider a 
closed system. The configuration of our Gedanken experiment is given in 
Fig. I. A moving bar slides without friction over conducting rails separated 
by a distance D. The space between the rails has a magnetic field B directed 
upward. The rails are very long and there is no resistance anywhere. At t = 
-0% the rod of mass M moves to the right with speed V. One rail is grounded; 
the other is connected to the vertical wire that supplies the electric field for 
the AC effect. At t = 0, the neutron (assumed to have its magnetic moment 
up) passes the point of closest approach to the wire. The voltage generated 
in the moving bar supplies the charge to the wire (which is extremely long). 
The wire has capacitance per centimeter C. In this computation, in order to 
demonstrate the phase shift of the rod, we treat the neutron as a classical 
particle. Since the neutron experiences no force, this is a valid approximation. 

We begin by noting the topological phase factor given by Aharonov and 
Casher (1984). It is exp[i~Ac(r)], with 

~AC(r) = ~-~ t t  X E" dr  (5) 
co 

In Fig. 1, the wire runs along the z axis. 
The azimuthal angle ~o is given by 

X 
sin q~ - (a 2 + x2)1/2 (6) 

where a is the distance of closest approach to the wire (impact parameter) 
of  the neutron. The electric field is then given by 

2k 2kcosq~ 
E = i (a 2 + x2)1/2 sin q~ - j (a 2 + x2)1/2 (7) 

B dz 

§ X 

x ; O  

I 

Fig. I. 
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where k is the charge/length on the wire. This yields 

~Ac(X) = ~ ch (a 2 + x 2) ~ to + (8) 

The interaction of equation (2) in the situation of  Fig. 1 is 

U = 2hvpoa 
c(x2 + a2 ) (9) 

with x = vt. 
It is straightforward to relate the motion of  the neutron to the Lagrangian 

of the moving bar. The charge/cm on the wire is related to the speed of  the 
moving bar by 

k = C BD~ (1 O) 

where ~ is the velocity of the moving bar and D is the distance between the 
parallel rails. The interaction energy of  equations (2) and (9) now becomes 

U = 2CBDvla"a~ 
r 2 -]" a2 ) (1 1) 

The Lagrangian for the moving bar is thus 

1 2CBDvlxa~ 
L = ~ M ~  2 + c2(x 2 + a 2  ) (12) 

The canonical momentum conjugate to ~ is 

2CBDvp.a OL M~ + (13) 
P~ = 0-~ = c2(~ + a 2) 

Since 0L/0/~ = 0, p~ is a conserved quantity. 
The value of  this integral of  motion is clearly ME, where V is the velocity 

of  the bar at t = -oo. The value of ~ at time t is therefore given by 

= V 2 C B D v ~ a  _ V +  At  (14) 
Mc2(x 2 + a 2) 

The phase shift of  the moving bar is then given by 

Afp~d~ I f  A~dt (15) 
A~bar(X) -- h - h P~ 
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where dt = dx/v. This yields 

MV 2CBD~a f ~ dx 
AtI)bar(X) -- h M c  2 ~ x2 + a~ (16) 

with h = (C/c)BDV; this is just the negative of the AC phase shift of 
equation (8). 

3. E N E R G Y  C O N S E R V A T I O N  

The Lagrangian formulation of the problem leads to results in such a 
direct manner that the physics of a problem is often obscured. It is therefore 
profitable to consider energy conservation in the system discussed here. 

We begin with the observation that the additional electric field energy 
(l/4'rr) f Enr - r)"Ewi=(r') d3r ' due to the passing neutron is zero. The 
force on the neutron is the negative gradient of this energy. However, the 
force on the neutron is zero. Therefore, this overlap energy is constant. 
Evaluation of  this constant energy at a time when the neutron is infinitely 
far from the wire shows that the overlap field energy vanishes. 

We next assume that the passage of  the neutron is adiabatic, i.e., that 
the wire is always in a state of static equilibrium. The surface of the wire is 
therefore an equipotential surface at all times. A slight redistribution of the 
charge on the wire must give a potential that just cancels the potential of the 
passing neutron. We thus have 

Ak(z) = -CAqb(z) (17) 

where Aqb(z) is the potential of the passing neutron at point z in the wire. 
The change in energy of the wire is 

I~_ ~ Ak(z) dz = I BDv f~_~ Ah(z) dz CBD--------V I~_oo Ad~(z) (18) 

where e is the voltage induced on the wire by the moving bar. The potential 
at a point z on the wire is 

p . ( r  - , r ' )  
A~)(r) - ~---  r p (19) 

where r = /~z and r '  = Lr - ja.  Then p = (1/c)v x It = - j  vp.lc yields 

A+(z, x) = vtm 1 
c (x z + a2 + z2)3/2 (20) 
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Equations (18) and (20) yield a change in the potential energy of the wire 
given by 

AUwir~ - CBDVvp'a [~_~ dz = 2CBD__ V v~a (21) 
C 2 (X 2 + a 2 -4- Z2) 3/2 c 2 (x  2 -F a 2) 

The change in the kinetic energy of the moving bar is 

A( 1 M~2) = M~ A ~ -  M V  A~ (22) 

Then A~ of equation (14) gives 

This is the negative of the change in potential energy of the wire. The reader 
who remains skeptical may wish to check that the force on the bar given by 

BDi 
F~ - (24) 

c 

with 

i = ~ AX(z) dz (25) 

is equal to M~ with 

d 

4. A GENERAL THEOREM 

In this paper and in an earlier one (HO), examples have been given 
which demonstrate that in an isolated system, when one part of the system 
experiences a path-dependent phase shift because of a very small interaction 
with the remaining parts of the system, the remaining parts undergo an equal 
but opposite phase shift. This is certainly no accident. In the following, we 
demonstrate that this phenomenon is a necessary consequence of the principle 
of least action. 

We consider an isolated system having N degrees of freedom with 
coordinates q~, q2 . . . . .  qs. The system is described by a Lagrangian L, so 
that the canonically conjugate momenta are as usual given by 

aL 
= 

, �9 �9 . ~  Pk -- a~lk k 1, N (26) 
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The principle of least action then states that 

I 
t N 

L d t = O ,  with L =  ~ p ~ k - - H  (27) 
I k = l  

where the second of the equations is the defining equation for H. The above 
equations yield 

I t2 N I t2 8 ~ PldfIk dt - 8 H dt = 0 (28) 
I k = l  l 

The above equations hold for arbitrary infinitesimal variation in coordinates 
and momenta. Instead of considering arbitrary variations, we consider first 
the system without the interaction. Interactions that result only in a path- 
dependent phase factor are, by their nature, extremely weak. We thus consider 
the variations ~qk and ~Pk tO be those resulting in an adiabatic switching on 
and off of the interaction leading to the phase shifts. We consider free particle 
effects such as those of AB and AC. 

Now, H is conserved, and the adiabatic switching on and off of the 
interaction occurs when the interacting parts are separated by very great 
distances. Hence we have 

g H dt = 0 (29) 
! 

Thus, equation (28) tells us that 

[t2 N N f q~t~ 
~ P~k dt = ~ ~ Pk dqk ---- 0 (30) 

I k = l  k = l  aqk(tl ) 

But 

~ q~t2) 8 Pk dqk 
d qk(t l ) 

is just the phase shift associated with the coordinate qk, in units of h. 
We note that here the 8qk do not necessarily vanish at the endpoints of  

the integral. The variations here are not virtual displacements, but real ones. 
This is quite legitimate. In the usual theory, the 8qk are chosen to vanish at 
the endpoints of the time integral for convenience, since the displacements 
are only virtual. All that is really required is the variational condition (27). 

We see that (l/h) E~=l 8 fP~ dqk = 0 for any isolated weakly interacting 
system. This result appears almost obvious, yet its implications are quite 
profound. It means that one must use utmost care in splitting an interacting 
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system into a particle and an external field. We see that whenever the wave 
function of  a particle in such a system undergoes a phase shift, the wave 
function of  the rest of the system undergoes an opposite phase shift. To ignore 
this phase shift of  the remainder of the system is to violate the postulate of 
quantum theory that requires the wave function of the completely isolated 
system to be single-valued. The external field approximation is just that--an 
approximation. This has been discussed in detail in HO. 
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